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INTRODICTION

This paper reports on our methods for anailyzing fuel designs proposed for
the thermionic and thermoelectric concepts for SP-100 application.

THERMIONIC CONCEPT

The proposed fuel design for the thermionic concept consisted of fully-
enriched oxide fuel clad 1in chemical vapor deposition (CVD) tungsten,
which also served as the emitter for the thermionic fuel element (TFE).
The fuel density was 95X of theoretical with the linear heat rate
flattened radially by removing fuel from the center of the fuel pellet.
The fuel inner diameter varied from ~0.45 in, at the core center to zero
at the edge of the core. The as-fabrizated gap between fuel and emitter
was 10 mils radial. The emitter thickness was 80 mils, and the outer
diameter was 1.099 in.

We decided to use the LIFE-4]1 code for evaluation of this concept after
extensive review of the code and development of a procedure that corrects
certain deficiencies we noted in analysis of several tests. The procedure
also simulates a phenomenon that is not modeled in LIFE but is believed to
cccur {n the thermionic design. That phenomenon is the vapor deposition
of fuel on the inner surfeces of cladding in those desipas either sealed
or operated Iln a vacuum. ~fredicted cladding deformations are ccmpared in
Fig. 1 wirh measured deformations for several SP-100 type tests.2-9

Pradicted fission gas release and volume swelling sre compared in Fig. 2
with measured values for several tests performed by H. Zimmerman on un-
restrained oxide fuel.6

Representative results of analysis of the chermionic concept are shown in
Fig. 3. This figure shows the predicted deformation for a solid TFE to be
used in the periphery and ior an annular rod to be used at core center,
for an emitter temperature of 1750 K. Other TFEs have inner holes of
intergediate diameter, with predicted deformetions between those shown in
Fig. 3.

The results in Fig. 3 show significant difference between the solid and
hollow pellet designs. These results clearly depend on correct modeling
of U0 creep. Hence, the ver’fication of ability to predlict relevant
test results as was reported earlier io quite important. These results
suggest that an inportant option for optimizing thermionic fuel element



lifetime in this design would be to redistribute central void from center
to peripheral elements.,

THERMUELECTRIC CONCEPT

The proposed thermoelectric fuel deeign was for 96X demse nitride fuel
clad in 29 mil thick PWC-11 alloy (Nb~1%Zr-0.12'C) with a 5 mil thick
tungsten liner. The pin was to be operated at a peak cladding temperature
of 1400 K, and was not vented. It would be operated at a peak power of
about 4.1 kW/ft to a peak buruup of ~4.9 a/o. The pin diameter was
0.413 in.,, with a 5 mil net radial gap betwzen fuel and cladding.

No satisfactory code exists to analyze the performance or nitride fuel at
this time. There 1is a LIFE-~4 CN code,3 but the nitride aspects of the
code have long been neglected. We used LIFE-4 CN strictly as a heat
transfer code. Brian Harbourne of General Eleztric identified a c¢rbide
fuel unrestrained swelling model developed by L. Zimmerman of KfK4 that
appears to correlate available nitride data, and developed a fission gas
release correlation based primarily upon temperature gradient as a driving
force. Using variations of these models,* we analyzed the performance
manually., We first calculated fuel temperatures for contamination of
plenum gas ranging from 0 to 100%, and for volumetric swelling ranging
from 0 to ~9% (gap closure expected at about 8.7% AV/V). Charts were
prepared showing mean fuel temperature as a function of fission gas
cortamination with swelling as a parameter. Calculating in increments of
0.5 a/o burnup, we would assume a fuel temperature and calculate the
swelling and fission gas release overall axial segments. We then deter-
mined fuel temperatures corresponding to the swelling and plenum gas con-
tamination from the charts. The calculation was repeated until assumed
and calculated temperatures agreed at each burnup increment. Subse-
quently, we mechanized the procedure. Mean fuel temperatures calculated
by the mechanized method are shown in Fig. 4.

With this process and the modified gas release correlation, we cstimated
an overall fission gas release of 33%, about 1% creep strain due to plenum
gas, and 1.9% strain due to fuel swelling.** To translate fuel swelling
into AD/D, we assumed isotropic swelling and that the fuel was too strong
for the cladding to modify its behavior.

Using the same process and the original gas release correlation as pro-
posed by larbourne, we obtained 5X fission gas release and negligible
creep strain with either Nb-1XZr or PWC-11l cladding.

*The fission gas releage correlation was modified to be somewhat more
conservative than the original correlation.

*%Total strain should be considerad the maximum of creep or fuel swelling
strain, not the sum of the two.



CONCLUSIONS

As a result of our analyses of these two concepts, we counclide that:

1. Available oxide fuel models with modifications provide an accept-
able means of evaluating oxide fuel systems for sapace applica-
tions;

2. A integrated fuel pin performance model 1is needed for nitride
fuel pins;

3. Better understanding of fi3sion gas release and swelling four
nitride fuel i1s needed before detailed design of nitride fuel
systems can proceed with confidence.
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Calculated cladding strain is compared with measured strain

for several thermionic elements and other related tests,2-d
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Fig. 2. Culculated results are compared with measured results for
fission gas release and swelling for several unrestrained oxide tests
conducted by H, Zimmerman of K£K.6
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Fig. 3. Calculated eaxial midplane emitter deformations for core
center (annular or pellet) and periphera. (solid pellet) thermionic
fuel element proposed for an SP-100 proposed design.
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Fig. 4. Mass averryed axial widplane fuel temperatures are shown
for the peak powered thermoelectric nitride fuel element, both for
the original fierion gas release correlation provided by General
Electric and for the correlation as it was modified.



